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In 1949 Theodor Foerster measured the quenching 
of trypaflavine fluorescence by rhodamine B in a 
methanol solution.’ Although by today’s standards this 
was not a particularly remarkable experiment, the 
theory presented in this work served as a guidepost for 
the extensive theoretical and experimental literature 
to follow. The fluorescence quenching observed in these 
types of experiments results from long-range, nonra- 
diative transfer of electronic excitation energy. This 
transfer occurs when transition dipoles are close enough 
(<lo0 A) to interact strongly and when the energies of 
the transition are identical (the resonance condition). 
Foerster derived an expression which predicts the 
fluorescence decay when dipolar energy transfer occurs 
from a population of donors to a population of acceptors 
or traps. The fluorescence intensity, 4, as a function 
of time t is given by 

4(t) e e- ( t /T)e-A( t / r )D” (1) 
where 7 is the fluorescence lifetime and A is a constant 
which depends on a number of parameters such as the 
acceptor concentration and the “characteristic Foerster 
distance”. The parameter D is the spatial dimension 
of the system and for Foerster’s experiment is simply 
3. The factor of 6 dividing the dimension results from 
the dipole-dipole interactions which lead to energy 
transfer. In a slightly different experiment, Tweet, 
Bellamy, and Gaines2 measured excitation energy 
transfer between chlorophylls in monolayer films. In 
this case D is equal to 2. 

In Foerster’s original experiment the steady-state 
fluorescence was observed, rather than the time course 
of fluorescence decay. For steady-state measurements, 
it is common to define an efficiency of energy transfer, 
E ,  by 

E = 1 - FDA/FD (2) 

where FDA is the fluorescence intensity of a donor in the 
presence of acceptors and FD is the donor’s fluorescence 
intensity in the absence of acceptors. The parameter 
E varies from 0 (no fluorescence quenching) to 1 (total 
quenching). It can be related to eq 1 because FDA/FD 
is simply the integral over all time of 4(t). Although 
steady-state fluorescence has been measured in nu- 
merous simple applications, in general the timeresolved 
data are more convenient for detailed analysis. This 
is because a wide temporal range can be observed, 
providing an additional variable for establishing scaling 
laws. Nevertheless, the concentration dependence of 
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acceptors can still be used to determine D from 
steady-state data. 

One might naturally assume that D would only take 
on the integer values of 1,2, or 3. However, with the 
advent of fractal geometry it has become clear that D 
need not be an integer. Benoit Mandelbrot wrote, “Now 
that fractal dimension is injected into the study of 
coastlines and other natural phenomena, even if specific 
reasons come to be challenged, I think we shall never 
return to the stage when D = 1, 2, 3 was accepted 
thoughtlessly and naively. He who continues to think 
that D = 1,2,3 has to argue his ~ a s e . ” ~  There has been 
a growing awareness of the fractal dimensionality of 
complex media and an increased effort to probe these 
microdomains. Thus, eq 1 has been elevated from a 
concise explanation of simple experimental data to a 
unique probe of the fractal geometry of complex sys- 
tems. Fluorescence resonance energy transfer (FRET) 
and excitation transfer (self-transfer) have been used 
to determine fractal dimensions in such diverse systems 
as silicas,4-8 polymer films: lipid and 
membrane protein aggregates.13J4 

An obvious response to the possibility of structures 
in which D is not an integer is, “What do they look 
like?” These structures often appear quite natural and 
are now well documented in a number of “picture 
books” on fractak3J5 In this Account two of the sim- 
plest fractal structures are considered, and they are 
illustrated in Figure 1. The first case is a fractal ag- 
gregate (Figure 1A) in which the density, p, of the units 
making up the structure decreases with the radius, r, 
from the center of the structure according to p(r)  = 
A P E  where A is a constant, D is the fractal dimension, 
and E is the Euclidean dimension in which the structure 
is embedded. Thus, in this case a fractal is a structure 
whose density distribution is not uniform but rather 
follows a fractional power law. Diffusion-limited ag- 
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techniques for characterizing these boundaries. The 
present review discusses how fluorescence resonance 
energy transfer can be used to determine the fractal 
characteristics of density distributions and of bounda- 
ries. A specific, biophysical application of the boundary 
determination is discussed. 
Fluorescence Resonance Energy Transfer in 
Fractal Aggregates 

Molecular/surface interactions are key to a range of 
processes such as heterogeneous catalysis, chemisorp- 
tion, and adsorption.la The nature of such interactions 
is dictated to a large extent by the geometry of the 
environment. Thus, there has been continued interest 
in developing techniques to characterize surface geom- 
etries and environments. This field has benefited from 
the use of fractals as a convenient mathematical for- 
malism to describe these complex structures. Never- 
theless, the problem of relating chemical and physical 
properties to surface geometry remains formidable. A 
limited number of studies have shown correlations be- 
tween the fractal dimension of the surface and chemical 
reactivities.l7J8 Such correlations are occasionally 
problematic because reactivities may correlate with 
subsets of the entire surface, such as edge effects. To 
fully utilize the fractal description of surface mor- 
phology, new techniques must be developed to address 
such specific questions of surface geometry. 

Fluorescence resonance energy transfer has shown 
considerable promise as a technique for probing mi- 
crodomains in complex media. In a typical experiment, 
fluorescence donors and acceptors are adsorbed onto 
a surface and either the time-resolved or the steady- 
state fluorescence is observed. Because the fluorescence 
lifetimes and steady-state intensities are related to the 
microscopic surface density of acceptors, FRET pro- 
vides a probe of the molecularly accessible surface 
morphology. The time-resolved fluorescence for sys- 
tems involving FRET between multiple donors and 
acceptors is nonexponential and is quite often accu- 
rately fit by eq 1. Equation 1 can be used to establish 
“fractal” dimension for virtually any system, whether 
it is truly fractal or not, merely from fitted parameters. 
This is not an artifact of the fitting procedure but rather 
reflects the complexity of excitation energy transport. 
For example, with self-transport there are typically two 
temporal regimes. The first occurs at short time or low 
concentrations and is characterized by time-dependent 
diffusion constants. At long time or high concentrations 
the behavior often switches over to a normal diffiwional 
p r o c e s ~ . l ~ * ~  This crossover can be exploited in situa- 
tions of donors and acceptors confined to a specific 
geometry (cylindrical pores, for instance) to provide 
additional information and model discrimination.21 In 
these instances eq 1 will be obeyed in both regimes 
except that the value of D will change. The analysis 
of these situations has been reviewed recently,2l and one 
can potentially discriminate fractal and nonfractal 
models in this way. The key point for the experimen- 
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Figure 1. Examples of fractal structures. Example A is a cluster 
aggregate with dilation symmetry. A common example is a 
diffusion-limited aggregate, which has been observed in electro- 
deposition. Fluorescence resonance energy transfer models 
consider transport of excitation energy from donors to acceptors 
adsorbed onto the lattice structure. Example B is the coastline 
of an aggregate. The aggregate is made up of trimeric units, which 
result in a more contoured coastline than monomers. FRET is 
measured from donors in the lipid void volume to acceptors on 
the protein. The bulk of the transfer occurs from a strip whose 
width is equal to the Foerster distance, Ro. 

gregates are a well-studied example of this type of 
fractal and have been used to model a wide range of 
physical structures. For instance, these structures have 
been observed in studies on electrodeposition and 
colloid formation. Their occurrence may be even more 
pervasive, but because the extended, dendritic struc- 
tures lack mechanical stability, they may be difficult 
to observe. For such materials the resulting morphology 
could represent packings of the “broken” arms of these 
structures. 

The second case of interest is the fractal structure 
formed by the coastline of an aggregate (Figure 1B). 
The coastline problem is by now classic in fractal ge- 
ometry. The contoured path of a coastline will fill more 
space than a line and less space than a plane, and 
therefore the fractal dimension, D, will be 1 C D C 2. 
Highly corrugated coastlines fill more space and have 
fractal dimensions close to 2. Smooth coastlines have 
dimensions closer to 1. The geometry of boundary re- 
gions often affeds the physicochemical properties of the 
interface.16 Therefore, it is important to develop 
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talist is that the fractal dimensions and the crossover 
region can be determined accurately and are insensitive 
to uncertainties in parameters such as the Foerster 
distance (contained in the parameter A in eq 1). This 
avoids much of the criticism which has surrounded 
biochemical applications of FRET. 

The question remains as to the source of the apparent 
fractal transport at short times for nonfractal systems. 
There have been a number of experimental and theo- 
retical reports on this effect for donor-donor trans- 
fer.z2~z3 Transport of excitation energy like transport 
of particles on a fractal lattice gives the appearance of 
a time-dependent diffusion “constant”. In the familiar 
Einstein formula, the mean squared displacement of a 
diffusing particle, (P), follows the relation (P) a t ,  and 
the diffusion constant will be time independent. For 
energy transport, (P) 0: t(gD)/6 where, depending on the 
problem, D can be either the fractal dimension or the 
normal spatial dimension.z4 It is seen then that, even 
for integer dimensionalities, the Einstein relationship 
shows a fractional scaling with time. Diffusion on a 
fractal lattice also does this, but in a somewhat different 
manner. This time-dependent diffusion in both cases 
is a result of the unusual diffusion equations associated 
with each problem. The energy-transport problem uses 
a complicated, “generalized” diffusion equation% while 
the fractal problem can be approximated using a pos- 
ition-dependent diffusion constant.z6 In these cases 
the diffusion equations are not equivalent and energy 
transport cannot be considered the same as fractal 
diffusion. Thus, the apparent fractal behavior of energy 
transport in a nonfractal system is really a misnomer 
and simply results from a complicated diffusion equa- 
tion rather than from some underlying fractal nature 
of the system. 

FRET can provide a wealth of information on surface 
morphologies in complex media It is particularly useful 
when combined with complementary techniques such 
as low-angle X-ray scattering. Although the detailed, 
model-dependent analysis of FRET data may at first 
appear difficult, there are a number of well-established 
tests. Results for the scaling behavior and crossover 
regimes for a variety of specific restricted geometries 
are available.z1 Restricted geometries can often be 
easily distinguished from fractal geometries because the 
fractal behavior is contained in a single scaling regimeen 
Thus, the suitability of the fractional exponent in eq 
1 over an entire temporal range and with a variety of 
acceptor concentrations provides strong support for a 
fractal model. A good example is the extensive study 
on porous silica gels.”8 Consistent and highly accurate 
fits are obtained using eq 1 for three different donor- 
acceptor pairs over a range of acceptor concentrations.5 
Additionally, fractal dimensions from these experiments 
coincide with those obtained using self-transfer of ex- 
citation energy.6 The fractal dimension determined 
with these techniques is in agreement with those ob- 
tained with adsorption methods and with small-angle 
X-ray ~cattering.~ This example demonstrates the 
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Figure 2. Construction of a triadic Koch island. The triangle 
(upper left) is the initiator, and the curve underneath (lower left) 
is the generator. Repeated replacement of line segments in the 
initiator with the generator reaults in the island (right). The triadic 
Koch island is used as a model of aggregate boundaries. 

utility of FRET techniques in dealing with difficult 
problems of surface geometry in materials science and 
will undoubtedly encourage additional efforts. 
Measuring Coastlines Using FRET 

Knowledge of the extent and nature of boundary 
regions is crucial for an understanding of surface phe- 
nomena.16 In the analysis presented here, it is shown 
how FRET can be used to determine the fractal di- 
mension of such boundaries. We consider energy 
transfer between separated domains of donors and ac- 
ceptors (see Figure 1). For simplicity the two-dimen- 
sional case wil l  be discussed. The general approach can 
also be applied to three-dimensional structures. The 
fractal dimension, D, of the boundary can be established 
from area-perimeter relationshipsz8 such as 

where P is the perimeter measured with a “yardstick” 
of length e, A is the area, and a! is a numerical constant 
of proportionality. For the simple case of a circle, D 
= 1 and a = 27W. However, monomeric units will not 
pack into a perfect circle but rather the coastline will 
be slightly more contoured. In a cluster theory of phase 
transitions, Fisher developed a simple model to account 
for boundary forces.29 This model used the scaling laws 
derived from the Ising model on a two-dimensional 
trigonal lattice. The value of D expected for this model 
is 1.06 and reflects the slight contour of the boundary. 

It is often possible to model domains by a simple, 
fractal structure known as a Koch island. These 
structures have been used in previous models of the 
fracture of materials.z8 An example of a Koch island 
is shown in Figure 2. The first curve on the lower left 
of the figure is the generator. Application of this gen- 
erator to each line segment of the initiator (the triangle) 
results in a prefractal. Higher order structures are 
formed by repeated application of the generator to line 
segments in the prefractal. A true fractal structure is 
achieved by an infinite number of generations. Physical 
structures, of course, are more random in nature. They 
also have a lower limit cutoff which occurs when the 

P(e)lID = c~A(e) l /~  (3) 
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Figure 3. Electron density map showing the trimeric structure 
of the membrane protein, bacteriorhodopsin. Electron density 
is projected in the plane of the membrane and shows the seven 
a-helical regions in each protein. (Courtesy of Dr. Robert M. 
Stroud.) 

Table I 
Perimeter-Area Fractal Dimensions 

system dimension 
2-D Ising model 1.07 
triadic Koch island 1.26 
quadratic Koch island 1.5 
hexadic Koch island 1.67 
bacteriorhodopsin aggregates (exptl) 1.3 & 0.1 

distance scale is comparable to the diameter of the unit 
structure. Thus, any physical structure must by ne- 
cessity be a prefradal. In practice, fractals can be good 
structural models over a limited range of distances. The 
advantage of the Koch island model is that mathe- 
matical relationships between the perimeter and the 
area can be readily derived for the prefractals28 and, 
therefore, are representative of finite structures. Al- 
though the fractal dimension wil l  be dependent on the 
generation number of the prefractal, this dimension 
rapidly approaches that for the infinite structure. In 
practice it is usually reasonable to use the fractal di- 
mension in eq 3 derived for the infinite case. Fractal 
dimensions for a number of different structures are 
listed in Table I. As can be seen, these dimensions are 
very sensitive to the geometry of the generator. 

In a simple analysis one assumes that all the 
quenching is due to boundary acceptors and that, on 
the average, each acceptor quenches identically. Given 
these assumptions, the efficiency of energy transfer, E, 
is given by 

E = ENA,B (4) 

Dewey 

Donors 

f 
Figure 4. Model of fluorescence resonance energy transfer from 
the void volume of donors to acceptors on the boundary of an 
aggregate or separate domain. Most of the energy transfer occurs 
in a region of radius Ro from the donor (hatched areas). Over- 
lapping regions (dark areas) will have different quenching effi- 
ciencies. A formal analogy exista between this situation and the 
excluded-volume problem of polymer physics. 

where NA,B is the number of acceptors in the boundary 
layer of the domain and E is the average efficiency per 
acceptor. Typically, the experimentally controlled pa- 
rameter is the surface density of acceptors, u, which is 
directly proportional to NA, the total number of ac- 
ceptors in the domain. It is well established that NAa 
is proportional to NA,30 so the slope of a log E versus 
log u plot should be unity. 

It is readily seen that the above analysis is an over- 
simplification. In general, each acceptor will not quench 
in an identical fashion. For simplicity, we can consider 
that each acceptor quenches, to some extent, all donors 
within a radius of R,,. Quenching by acceptors is not 
additive so that when an acceptor sphere of radius Ro 
intersects a second acceptor sphere, the donors in the 
intersected region will be quenched differently. Thus, 
acceptors close together will quench differently than 
those far apart. This effect is illustrated in Figure 4, 
where the darkened regions will have different 
quenching efficiencies than the other regions. Figure 
4 may also be viewed as an analogue to the well-known 
excluded volume problem of polymer physics.3l In this 
case, the coastline becomes the polymer and the spheres 
of quenching become the van der Waals radii of the 
units in the polymer. The problem of calculating the 
efficiency of energy transfer from the boundary then 
has a formal analogy with that of calculating the root 
mean square distance, R, for a polymer. This problem 

(30) Feder, J. Fractak; Plenum: New York, 1988; pp 31-40. 
(31) de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell 
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represents one of the successes of renormalization group 
theory. In these approaches the details of the molecular 
interactions (or in this case energy transfer) are not so 
important as establishing the universality of the expo- 
nents. This is why we can use the simplistic view of 
energy-transfer quenching presented in Figure 4. 

For the polymer problem the root mean square dis- 
tance is a function of the number of units, N ,  and the 
reduced parameter, u:31 

R = af(N,u) ( 5 )  
where a is the diameter of the unit and u is u/ad with 
u being the excluded volume characterizing the inter- 
actions between units and d being the dimension of 
space. The renormalization result gives 

R a w  (6) 
with v being the critical exponent. In the energy- 
transfer problem a similar relationship is obtained with 
N being replaced by NBA. In this case the efficiency 
of energy transfer, E, will be proportional to the area 
of a strip of width Ro surrounding the boundary. If the 
variable a is now taken to be the length associated with 
each acceptor and u is a "reduced" efficiency of energy 
transfer, then E is a function of the number of boundary 
acceptors, NA,B, and u: 

Renormalization as in the polymer problem then gives 

where v is the critical exponent for the problem. The 
goal is then to relate this critical exponent to the fractal 
dimension of the coastline. The value for v in the 
two-dimensional polymer problem is 3/4. However, this 
is not the appropriate value for the energy-transfer 
problem. In the latter problem the contour of the 
boundary is fixed by the forces within the aggregate and 
is independent of the interactions between donors and 
acceptors. Thus, the value of the variable, a,  has a 
different physical meaning. It represents the step size 
required to renormalize the energy-transfer problem so 
that "units" of this size do not have overlapping zones 
of transfer efficiency. We assert that the proper ex- 
ponent for the scaling law in eq 8 is the one associated 
with the root mean square distance of the Koch curve, 
RKC. This is readily shown to be given by RKC a MID. 
The Koch curve will have the same fractal dimension 
associated with its length as appears in the perimeter- 
area relationship. Thus, the final scaling relationship 
is 

E a w a M I D  (9) 
Equation 9 can be arrived at independently using 
nonrenormalization methods. This result indicates that 
the slope of the log E versus log u plot is equal to 1/D. 
Thus, it establishes the connection between the ex- 
perimental data and the fractal dimension of the the- 
oretical model. 
A Biophysical Example 

An important and difficult problem in membrane 
biochemistry is the determination of the subunit 
structure of membrane-bound proteins. Multimeric 
proteins typically have a range of cooperative and reg- 
ulatory phenomena not accessible to monomeric pro- 
teins. It has been notoriously difficult to determine the 

E = R o a f ( N ~ , ~ , u )  (7) 

E a (NA,B)' a (8) 
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functional unit of membrane-bound proteins. This is 
illustrated by the problem plaguing electron microscopic 
studies. Typically electron micrographs of biomem- 
branes show phase-separated structures in which the 
protein is segregated in large spatial domains. When 
examining such images one must distinguish between 
protein-protein vntac8 resulting from specific, stable 
structures and those contacts which are a result of 
packing in the phase domain. Typically, the nearest 
neighbor distance can be comparable in both cases. 
Unfortunately phase-separated domains are experi- 
mentally difficult to disperse, and this hampers efforts 
to visualize the underlying subunit structure. 

When the protein aggregates consist of multisubunit 
complexes, a more contoured boundary is formed. This 
is because the boundary cannot "cut through" the 
multimeric units and consequently the coastline is more 
extended. This effect is illustrated in Figure 1 for 
trimeric units. The forces holding the trimer together 
are stronger than the surface forces, and the aggregate 
cannot rearrange to minimize its surface energy. The 
resulting jagged coastlines are similar to those observed 
in the fracture of materials. As mentioned previously, 
this latter case has been successfully modeled using 
Koch islandsa2* It is anticipated that monomeric pro- 
teins packed in a domain will have a fractal boundary 
dimension of 1.07 (see Table I). Proteins with an un- 
derlying subunit structure and, therefore, specific 
packing geometry will have dimensions greater than 
1.07. Thus, FRET of the boundary of protein aggre- 
gates provides a diagnostic test for multimeric units. 
As an initial investigation to assess the utility of this 

approach, FRET experiments were performed on bac- 
teriorhodopsin (bR).13*32 This membrane-bound pro- 
tein has been extensively studied and, for a number of 
experimental reasons, is particularly convenient. 
Electron diffraction studies have shown that this pro- 
tein in the native membrane forms extensive semi- 
crystalline arrays consisting of trimers which are hex- 
agonally packed.33 The trimeric structure is shown in 
the electron density map in Figure 3. Circular di- 
chr0ism,3~ cal~rimetric,~~ and rotational anisotropy36 
measurements indicate that aggregates of trimers are 
formed in reconstituted artificial membrane systems as 
well. Thus, this established subunit structure provides 
a good "test case" for the FRET analysis. 

In our experiments, retinal, the single, intrinsic 
chromophore of bacteriorhodopsin, is used as the energy 
acceptor. The protein is reconstituted into artificial 
phospholipid vesicles, providing a well-defined system 
in which the surface density, u, of protein is readily 
varied. A fluorescent lipid donor is incorporated into 
the vesicle membrane. The protein aggregate will then 
be uniformly labeled with acceptors, and the lipid do- 
nors will occupy the membrane surrounding the ag- 
gregate (the void ~ o l u m e ) . ~ ~ > ~ ~  Typically, the width of 
a protein wi l l  be roughly the same as the characteristic 
Foerster distance, Ro. Because the efficiency of 
quenching falls off sharply at distances greater than Ro, 
the quenching of the lipid donor will be caused pre- 

(32) Hasselbacher, C. A.; Street, T. L.; Dewey, T. G. Biochemistry 

(33) Hayward, S. B.; Stroud, R. M. J.  Mol. Biol. 1981,151,491-517. 
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1984,23, 6445-6452. 

840-849. - . - - ._ . 
(35) Heyn, M. P.; Blume, A.; Rehorek, M.; Dencher, N. A. Biochem- 

istry 1981, 20, 7109-7115. 



200 Acc. Chem. Res., Vol. 25, No. 4, 1992 

dominantly by the acceptors in the boundary layer of 
the aggregate. This provides the basis for the mea- 
surement of the coastline of the aggregate. 

The efficiency of energy transfer (E)  was determined 
as a function of protein surface density (a). Since Q is 
proportional to NA, a plot of log E versus log a has a 
slope of u (see eq 9). The fractal dimension determined 
from our experimental results on bR13932 are shown in 
Table I along with the fractal dimensions of different 
theoretical models. As can be seen, the experimental 
dimension of 1.25 agrees within error with the value for 
the triadic Koch island (1.26). This agreement is an- 
ticipated for a membrane aggregate that forms stable 
units. Because the trimeric structure has been deter- 
mined independently, these initial resulta are especially 
encouraging. We would clearly like to establish the 
generality of the model using other protein systems. As 
in the case for the silica gels, the biophysical FRET 
studies will be most useful when applied in conjunction 
with other structural techniques. We are currently 
developing methods for processing electron micrographs 
to determine fractal dimensions. Ideally these methods 
can be used hand-in-hand to establish the fractal di- 
mensions of other systems with known subunit struc- 
tures. A particularly convenient system for this might 
be dimers created by using an antibody to cross-link 
membrane proteins at specific sites. 

This use of FRET offers distinct advantages over 
previous applications. The goal is to establish a scaling 
law and not to calculate specific distances. Thus, we 
require very little knowledge of the Foerster distance, 
Ro. All that is necessary is that this distance be shorter 
than the width of the boundary layer. This is an im- 
portant consideration as uncertainties in Ro have ham- 
pered conventional applications of FRET in biological 
systems. 
Summary and Perspectives 

Historically, the bulk of the applications of fluores- 
cence resonance energy transfer have been on biological 
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systems. This technique has found its greatest utility 
in situations that are not amenable to traditional 
structural approaches. Examples include multienzyme 
complexess and biological membra11es.3~ Despite these 
successes, the technique has been criticized for its low 
spatial resolution. This is a result of uncertainties in 
the Foerster distance and is due in part to the inability 
to determine the orientation of donor and acceptor 
dipoles. 

In the present work, a new generation of energy- 
transfer techniques have been discussed which does not 
have some of the p i t f a  of earlier methods. These new 
methods, which have found application to materials 
science, polymers, and biomembranes, focus on the 
scaling behavior of energy transfer. Exponents for 
scaling of energy transfer with respect to time and/or 
acceptor concentration lead to unique interpretations 
of the structure of microdomains in complex media. 
The scaling results are insensitive to the uncertainties 
in the Foerster distance which have plagued previous 
applications. The ability to experimentally determine 
scaling exponents and crossover points for a range of 
temporalfconcentration conditions provides a rich 
phenomenology which enables the discrimination of an 
array of models. With the increased emphasis on the 
scaling behavior, new theoretical models will be de- 
veloped, and these wil l  doubtless incorporate ideas from 
the theory of polymers and critical phenomena. These 
new models should in turn stimulate further new ex- 
perimental applications over a broad range of disci- 
plines. 
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